Systematic identification of transcriptional regulatory modules from protein–protein interaction networks
نویسندگان
چکیده
Transcription factors (TFs) combine with co-factors to form transcriptional regulatory modules (TRMs) that regulate gene expression programs with spatiotemporal specificity. Here we present a novel and generic method (rTRM) for the reconstruction of TRMs that integrates genomic information from TF binding, cell type-specific gene expression and protein-protein interactions. rTRM was applied to reconstruct the TRMs specific for embryonic stem cells (ESC) and hematopoietic stem cells (HSC), neural progenitor cells, trophoblast stem cells and distinct types of terminally differentiated CD4(+) T cells. The ESC and HSC TRM predictions were highly precise, yielding 77 and 96 proteins, of which ∼75% have been independently shown to be involved in the regulation of these cell types. Furthermore, rTRM successfully identified a large number of bridging proteins with known roles in ESCs and HSCs, which could not have been identified using genomic approaches alone, as they lack the ability to bind specific DNA sequences. This highlights the advantage of rTRM over other methods that ignore PPI information, as proteins need to interact with other proteins to form complexes and perform specific functions. The prediction and experimental validation of the co-factors that endow master regulatory TFs with the capacity to select specific genomic sites, modulate the local epigenetic profile and integrate multiple signals will provide important mechanistic insights not only into how such TFs operate, but also into abnormal transcriptional states leading to disease.
منابع مشابه
pSTIING: a ‘systems’ approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer
pSTIING (http://pstiing.licr.org) is a new publicly accessible web-based application and knowledgebase featuring 65 228 distinct molecular associations (comprising protein-protein, protein-lipid, protein-small molecule interactions and transcriptional regulatory associations), ligand-receptor-cell type information and signal transduction modules. It has a particular major focus on regulatory ne...
متن کاملComparison of Hubs in Effective Normal and Tumor Protein Interaction Networks
ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملIdentification and prioritization genes related to Hypercholesterolemia QTLs using gene ontology and protein interaction networks
Gene identification represents the first step to a better understanding of the physiological role of the underlying protein and disease pathways, which in turn serves as a starting point for developing therapeutic interventions. Familial hypercholesterolemia is a hereditary metabolic disorder characterized by high low-density lipoprotein cholesterol levels. Hypercholesterolemia is a quantitativ...
متن کاملIdentification of diagnostic biomarkers by bioinformatics analysis in the inflamed and non-inflamed intestinal mucosa in Crohn\'s disease patients
Background: Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) which despite the unknown details is generally related to genetic, immune system, and environmental factors. In this study, we identify transcriptional signatures in patients with CD and then explain the potential molecular mechanisms in inflamed and non-inflamed intestinal mucosa in these patients. Materials and Me...
متن کامل